PDN Application of Ferrite Beads

11-TA3

Steve Weir
CTO IPBLOX, LLC
Objectives

• Understand ferrite beads with a good model
• Understand PDN design w/ sensitive loads
• Understand how to determine when a ferrite bead based filter makes sense and when it does not
• Understand filter synthesis to design req’ts
 – Summarized, details in manuscript
Ferrite Bead Properties

• **Ferrite beads are not magic.**
 – They are neither panaceas, nor or they demons from PDN hell.

• Ferrite beads are components like any others which have very useful properties, but impose side-effects which must be considered.

• Proper applications occur where the benefits outweigh the costs of the side-effects.
Ferrite Bead Properties

• Sintered compositions
• Two families dominate beads:
 – MnZn
 • Lower frequency power material
 • Lower resistivity
 • Higher permeability
 – NiZn
 • Higher frequency material
 • Higher resistivity
 • Lower permeability
Ferrites Make Excellent Inductors

- Beads are typically resistive over 1-2 frequency decades
 - At lower frequencies they are inductive
 - At higher frequencies they are capacitive
- Some NiZn ferrite beads are high Q inductors well past 100MHz.
 - TDK MPZxxxxDyyyy beads are inductive to 300-400MHz
Models

Single-Branch Model

Two-Branch Model
Example Model Fit

Component Only

Filter Response 50 Ohm Ports
Example Model Fit

• 1 Branch and 2 branch models both closely track actual response with only minor variations deep in the stop band.

Filter Response 50 Ohm Ports
Available Bead Characteristics

• Beads are available with equivalent inductances from 10’s of nH to several uH.
• If lower inductance is needed, consider making an inductor out of a small etch segment:
 – \(L \approx \mu_0 \times \mu_r \times H \times L/W \)
 • H Dielectric height in mils
 • L/W dimensionless length / width
DC BIAS

• Beads are subject to saturation effects
• DC bias above 30-40% of rated current can substantially drop effective inductance by 50% or more.
 – How much depends on how aggressively I_{MAX} has been rated.
 – Simulate with both min and max load currents
 – F_{co} shifts-up at higher biases
 – Q reduces at higher biases
 – Reduces insertion loss

• Beware of some vendor SPICE models for AC analysis
 – Some models have been developed for transient response and have questionable AC response.
 – Best to derive performance from measurements or data sheet ZXR or S params at required bias.
LPF F_{CO} Resonance

- Lightly loaded series LC filters resonate
- Ferrite beads high Q inductor at F_{CO} for most applications
- Lots of noise insertion gain is possible near F_{CO}
- For PLLs this can be very problematic, especially when F_{CO} is located close to a noise source like an SMPS switching frequency.
Damp LC Filters w/Dominant Poles

- Dominant pole advantages:
 - No added DC drop
 - No insertion loss reduction in stop-band
 - No added DC power consumption
- Disadvantages
 - Additional larger capacitor required to form the dominant pole
- $C_{DP} = 5C$ is usually a good design compromise
 - C_{DP}, R_{DP} tables in manuscript
Series Filter Z_{22} Impedance

- Series filter load side shunt impedance builds to a maximum near F_{CO}.
- More inductance =>
 - Lower F_{CO},
 - More outside noise insertion loss,
 BUT ALSO
 - Higher load side impedance
 - Load side capacitance must scale w/series inductance to hold a fixed maximum Z_{22}
Local Plane Isolation w/ Beads

- Contiguous planes versus four quadrants
 - Total is greater than sum of the parts
- Larger plane extents suppress modal resonances:
 - Skin and tangent loss both increase each reflection pass for larger dimensions
 - Smaller polygons:
 - Less loss / pass
 - Higher Q
 - More resonant peaking
Local Plane Isolation w/ Beads

- Example uniform bypass:
 - 2 ea 1uF 0402 / sq in.
 - 500uF 7mOhm each quadrant
- w/o beads, excited source sees the entire PDN
 - Lower effective Z up to PDN / PCB resonance
 - Little isolation at PDN/PCB resonance and lower modal resonance frequencies
Local Plane Isolation w/ Beads

- w/ beads, excited source sees the entire PDN only up to about $\frac{1}{2} F_{CO}$.
 - Higher impedance at all higher frequencies than w/o bead.
 - Other quadrants isolate @ FCO and beyond
 - High isolation through PDN resonance, and PCB modal resonances.
When **Doesn’t** Series Isolation Make Sense?

- Loads that tolerate similar noise levels at the common PDN interconnect (planes) do not benefit from isolation.
 - Z_{BYPASS} for each load is inversely proportional to that load’s noise current.
 - F.O. approximation bypass is the same joined or isolated.
 - Actually better joined:
 - Noise coherence or lack thereof
Combined Noise Sources, Equal Noise Tolerance @PCB

- Loads that tolerate similar noise levels at the common PDN interconnect (planes) require bypass admittance proportional to noise current.
- IE constant peak noise voltage.
Combined Noise Sources, Equal Noise Tolerance @PCB

- When connected together, the **PEAK** noise remains constant.
- Average voltage **ONLY** remains constant if the noise sources are coherent and in-phase.
- Out of phase reduces **average** noise.
- Incoherent drives average noise down by square root of equal sources w/ matched bypass.
When **Does** Series Isolation Make Sense?

- Loads that do not tolerate similar noise levels at the common PDN interconnect (planes), and where the more sensitive load current does not heavily dominate.
- More tolerant loads are overbypassed to meet sensitive load noise requirements.
- Isolation can result in component reductions of 5:1 or more.
Example PLL Noise Sensitivity

- PLL supply well bypassed in both cases.
- Top:
 - PLL supply common w/digital supply
- Bottom:
 - PLL supply isolated w/ damped ferrite bead filter
- Ferrite bead based series filter is well-justified in this application.
Example Z_{22} Impedance Sensitivity

- Different SerDes than previous example.
- Transmit jitter source is primarily ISI.
- Top:
 - Low impedance PCB AVCCH supply
- Bottom:
 - Improved very low impedance PCB AVCCH supply
- Ferrite beads would aggravate ISI by raising Z_{22}
- Don’t starve high-speed circuits!
PDN Example, Bead Evaluation

• Analog load: High speed ADC
 – +/-2mV V_{CC} noise tolerance
 – +/-100mA dynamic current
 – 20mOhms Z_{MAX}

• N 1.2V Digital I/Os:
 – +/-30mV V_{CC} noise tolerance
 – +/-N*10mA dynamic current
 – @ +/-2mV $Z_{MAX} = 0.2$ Ohms/N
 – @ +/-30mV $Z_{MAX} = 3.0$ Ohms/N
Example

• FOM
 – # of bypass caps required = K/FOM
• Common rail
 – 10 I/Os 20mOhms digital, 20mOhms analog
 • FOM = \((.02 | | .02) = .010 \)
 – 100 I/Os 2mOhms digital
 • FOM = \((.02 | | .002) = .0018 \)
• Isolated rails
 – 10 I/Os 20mOhms analog, 300mOhms digital
 • FOM = \((.02 | | 0.30) = .019 \)
 • \(.019/0.010 \approx 1.9:1 \) component reduction by isolation
 – 100 I/Os 20mOhms analog, 30mOhms digital
 • FOM = \((.02 | | .03) = .012 \)
 • \(.012/0.0018 \approx 6.7:1 \) component reduction by isolation
Filter Synthesis Summary

• Full synthesis procedure detailed in manuscript
• Step #1:
 – **Determine the design requirements:**
 • How much noise does the analog node tolerate vs frequency at the PCB attachment?
 – Translate to insertion loss
 • What is the current vs. frequency from the analog node?
• Without requirements:
Filter Synthesis Summary

• Choose the lowest inductance bead that will do the job
• Load side capacitance determined by the greater req’t:
 – Bead inductance and Z_{22} low frequency impedance requirements
 – Bead inductance and F_{CO} requirements.
• Dominant pole damping req’d/not req’d determined by bead L / bypass C Q near F_{CO}
 – See manuscript for details
• Load side HF capacitor count determined by Z_{22} vs. high frequency requirements.
Summary

• Ferrite beads are not magic.
• Ferrite beads can be modeled relatively simply for modest DC current swings.
 – Multiple sim passes required if the load has wide DC swing
• Ferrite beads are high Q inductors up to some frequency that depends on the bead material.
 – Some beads are high Q inductors to 100’s of MHz
 – More typical is 10MHz – 30MHz
 – Series filter design must account for damping req’ts at F_{co}.
 • Dominant pole is usually the best damping technique when req’d.
Summary Cont’d

• Make PDN no more complex than actually needed.
 – Series filters / partitioning can realize very high noise isolation from low to high frequencies.
 – Series filters and rail partitioning *aggravate*:
 • Signal return routing
 • Layout
 • Noise averaging
 • PCB modal resonances
 – Larger polygons / planes serving more properly bypassed loads yield the lowest average noise levels for a given PDN bypass component count.
Summary Cont’d

• The need for a series filter can only be determined when power delivery requirements are known.

• Series filters make sense only when:
 – Noise voltage sensitivity at the planes is disparate AND
 – The less sensitive loads dominate noise currents

• Always design series filters for the minimum required insertion loss / inductance to do the job.
 – Sometimes a small etch inductor will do better than a bead due to available small inductances.

• KNOW YOUR POWER DELIVERY REQUIREMENTS!
Thank You

Contact Information:

IPBLOX, LLC
150 N. Center St. #211
Reno, NV 89501
www.ipblox.com
eng@ipblox.com
(866)675-4630