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In 2011, CVEL began to guarantee that the automotive products 
they reviewed/designed would meet all automotive EMC 

requirements the first time they were tested. 
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What we are NOT doing 
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NOT Relying on EMC Design Guidelines 
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What we are NOT doing 

4 

NOT Modeling Products with Numerical EM Modeling Codes 

Numerical EM modeling codes give precise 
answers to precisely defined problems. 
EMC geometries are not well-defined. 

We don’t want to know how much a given 
configuration will radiate. The answer to that 
question depends on a lot of factors that we 
have no control over.  
 
We want to know if our product will meet its 
requirements.  
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What we ARE doing 
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Identifying all possible sources, victims and coupling paths 

SOURCE ANTENNA 



Clemson Vehicular Electronics Laboratory - 2013 

History 
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1989 2013 1995 2006 

Begin 
development of 

numerical 
modeling 

software for 
EMC analysis at 

UMR 

Formation of 
EMC Expert 

System 
Consortium 

First Maximum 
Radiated 
Emission 
Calculator 
(MREMC) 

Development of 
Performance-
Based Design 

for EMC 
Process 

Investigation of fundamental EMI source mechanisms 
driving common-mode radiation from printed circuit boards 
with attached cables, IEEE Trans. on EMC, Nov. 1996. 

Calculating radiated 
emissions due to I/O line 
coupling on printed circuit 
boards using the imbalance 
difference method,” IEEE 
Trans. on EMC, Feb. 2012. 

Estimating maximum radiated emissions from printed circuit 
boards with an attached cable, IEEE Trans. on EMC, Feb. 2008. 

Development of algorithms for calculating radiated 
emissions and EM coupling for various PCB structures 

~40 publications relating to ability of various PCB 
structures to radiate  



Clemson Vehicular Electronics Laboratory - 2013 

Maximum Radiated Emissions Concept 
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315 MHz RF Transmitter 
(5 watts) 

Connector for Antenna 

What is the maximum 3-meter radiated field strength at 315 MHz? 

a. impossible to predict without knowing what antenna is connected 
b. impossible to predict even if the antenna is known 
c. 15 V/m 
d. none of the above 
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Maximum Radiated Emissions Concept 
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315 MHz RF Transmitter 
(5 watts) 

Connector for Antenna 

What is the maximum 3-meter radiated field strength at 315 MHz? 
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Maximum Radiated Emissions Concept 
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315 MHz RF Transmitter 
(5 watts) 

Connector for Antenna 

What is the maximum 3-meter radiated field strength at 315 MHz? 
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Maximum Radiated Emissions Concept 
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What is the maximum 3-meter radiated field strength at 200 MHz? 

We can put an upper bound on the radiated 
emissions at any given frequency! 
 
The more we know about the product design, 
the lower this upper bound becomes. 
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Maximum Radiated Emissions Concept 
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Possible Antenna? 
Possible Source? 

(Processor with 200-MHz clock) 
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Maximum Radiated Emissions Calculation 
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Maximum Radiated Emissions Calculation 
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Maximum Radiated Emissions Calculator 
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Performance-Based EMC Design Procedure 
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1. Determine worst-case signal characteristics 

2. Calculate maximum possible emissions from signal driving 
matched antenna 

3. If > limit at any frequency, control risetime with series resistor 

4. Recalculate maximum possible emissions from signal driving 
matched antenna 

5. Proceed to Step II. 

 

Step I: For each net on each board: 
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MS Excel Spreadsheet Calculation 
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Design Review Procedure 
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1. Determine worst-case emissions due to each of the 5 MREMC 
algorithms that apply to your design 

2. For any net that does not meet the specification at every 
frequency as determined by a given algorithm, adjust the 
design until the net is compliant. 

 

Step II: For each net at each frequency over the limit: 
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Example 1: Microcontroller Output Driver 
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 Vsource = 3.3 V 

 Imax = 20 mA 

 Cin = 5 pF 

 Rseries = 0 Ω 

 CLK Freq = 100 kHz 

Available Information 

 Rsource = 165 Ω 

 T = 10 µs 

 tr = 1.82 ns 

Calculated Parameters 

Suppose we connected an output of this microcontroller 
directly up to an impedance-matched antenna… 

Automotive microcontroller in typical application: 
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Example 1: Microcontroller Output Driver 
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 Vsource = 3.3 V 

 Imax = 20 mA 

 Cin = 5 pF 

 Rseries = 20 kΩ 

 CLK Freq = 100 kHz 

Available Information 

 Rsource = 8165 Ω 

 T = 10 µs 

 tr = 220.0 ns 

Calculated Parameters 

Suppose we connected an output of this microcontroller 
directly up to an impedance-matched antenna… 

Same output with 20-kΩ series resistor: 
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Series Resistors 
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   Optimal control 

   Minimal cost / Minimal footprint 

   Predictable behavior 

   Easy to adjust without affecting layout 

   Reduces power bus noise 

Why use series resistors to control transition times? 
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Example 2: Microcontroller Output Driver 
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 Vsource = 3.3 V 

 Imax = 20 mA 

 Cin = 5 pF 

 Rseries = 0 kΩ 

 CLK Freq = 1 MHz 

Available Information 

 Rsource = 165 Ω 

 T = 1 µs 

 tr = 1.82 ns 

Calculated Parameters 

Suppose we connected an output of this microcontroller 
directly up to an impedance-matched antenna… 

Same output with 1 MHz output: 
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Example 2: Microcontroller Output Driver 
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 Vsource = 3.3 V 

 Imax = 20 mA 

 Cin = 5 pF 

 Rseries = 8 kΩ 

 CLK Freq = 1 MHz 

Available Information 

 Rsource = 8165 Ω 

 T = 1 µs 

 tr = 90 ns 

Calculated Parameters 

Suppose we connected an output of this microcontroller 
directly up to an impedance-matched antenna… 

Same output with 1 MHz output and 8-kΩ series resistor: 
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Example 3: Xilinx Vertex-6 FPGA SelectIOTM  
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 Vsource = 2.5 V 

 Imax = 240 mA* 

 Cin = 5 pF 

 Rseries = 0 kΩ 

 CLK Freq = 1 MHz 

Available Information 

 Rsource = 50 Ω 

 T = 1 µs 

 tr = 0.55 ns 

Calculated Parameters 

Suppose we connected an output of this FPGA directly 
up to an impedance-matched antenna… 

With 1 MHz output : 
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Example 3: Xilinx Vertex-6 FPGA SelectIOTM  
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 Vsource = 2.5 V 

 Imax = 240 mA* 

 Cin = 5 pF 

 Rseries = 20 kΩ 

 CLK Freq = 1 MHz 

Available Information 

 Rsource = 50 Ω 

 T = 1 µs 

 tr = 221 ns 

Calculated Parameters 

With 1 MHz output  and 20-kΩ series resistor: 
Suppose we connected an output of this FPGA directly 
up to an impedance-matched antenna… 
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Example 4: Xilinx Vertex-6 FPGA SelectIOTM  
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 Vsource = 2.5 V 

 Imax = 240 mA* 

 Cin = 5 pF 

 Rseries = 0 kΩ 

 CLK Freq = 32 MHz 

Available Information 

 Rsource = 50 Ω 

 T = 31 ns 

 tr = 0.55 ns 

Calculated Parameters 

With 32 MHz output and 0-Ω series resistor: 
Suppose we connected an output of this FPGA directly 
up to an impedance-matched antenna… 
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Example 4: Xilinx Vertex-6 FPGA SelectIOTM  
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 Vsource = 2.5 V 

 Imax = 240 mA* 

 Cin = 5 pF 

 Rseries = 500 Ω 

 CLK Freq = 32 MHz 

Available Information 

 Rsource = 50 Ω 

 T = 31 ns 

 tr = 6.0 ns 

Calculated Parameters 

With 32 MHz output and 500-Ω series resistor : 
Suppose we connected an output of this FPGA directly 
up to an impedance-matched antenna… 
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3 Elements of a Radiated Emissions Problem 
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SOURCE ANTENNA 
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MREMC Algorithms (Nets) 
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Direct Radiation from Trace 

 

Trace Drives an Attached Cable and/or Heatsink 

 

Trace Couples to another Trace that Drives an 
Attached Cable 

 

Trace Drives the Power Bus 

Need to know: net dimensions 

Need to know: net dimensions, net placement, 
connector placement, and board dimensions 

Need to know: net dimensions, net placement, 
connector placement, and board dimensions 

Need to know: board dimensions 
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MREMC Algorithms (Nets) 
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Direct Radiation from 10-cm trace, 1-mm above plane 
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MREMC Algorithms (Nets) 
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Trace Couples to another Trace that Drives an 
Attached Cable 
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MREMC Algorithms (Nets) 
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Trace Drives an Attached Cable and/or Heatsink 
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MREMC Algorithms (Nets) 
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Trace Drives an Attached Cable and/or Heatsink 
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MREMC Algorithms (Components) 
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Direct Radiation from Component 

 

Component Drives an Attached Cable and/or 
Heatsink 

 

Component Couples to another Trace that Drives an 
Attached Cable 

 

Component Drives the Power Bus 

Negligible 

Measure or model the equivalent dipole source for the 
component and use the trace algorithm 

Measure or model the equivalent dipole source for the 
component and use the trace algorithm 

Need to know: board dimensions, CPD and load Cs, 
component datasheet information 
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MREMC Algorithms (Shielded Products) 
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 Board analysis should be done as if there were no shield 

 E-field coupling problems can be mitigated with E-field 
shielding 

 Common-mode currents on cables can be mitigated enclosure 
to cable filtering 

Wiring Harness

Digital Return Plane
Chassis Ground Plane

Capacitors connecting
chassis ground to the
digital return plane

Chassis connection
to chassis ground

Chassis connection
to chassis ground
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h = 0.5      - no plane 
h = small   - w/ plane 

MREMC Algorithms (Differential Signals) 
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 Use Imbalance Difference Model to convert all 
differential signals to equivalent common-mode 
sources 

 Then apply the same algorithms used for single-
ended signals 
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Susceptibility Calculations 
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PORT 1 PORT 2 

Calculate Maximum Possible S21 
Maximum Radiated Emissions Calculator (MREMC) 
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Application to Infotainment System 
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 5 Circuit Boards, mixed-signal RF, audio, video 

 Internal ribbon cable connections 

 Unshielded external connections 

 AM/FM Radio 

 3 Camera Interfaces 

 GPS 

 DVD Player 

 USB 

 Fold-out Display 
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EMC Testing 

38 



Clemson Vehicular Electronics Laboratory - 2013 

Identify Antennas 
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Design Guidelines 
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e.g.  
No ground traces. 
No shared ground vias. 

Many design “rules” were violated in the final design. Attempting to comply with a complete 
list of design rules would have made the product unnecessarily expensive. 

Nevertheless, some rules make too much sense to ignore. (Even if they are not 
explicitly required.) 
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Design Flexibility 
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e.g. grounding option 

It’s a good idea to leave options open to deal with unexpected issues. 



Clemson Vehicular Electronics Laboratory - 2013 

Design Standards 
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e.g. GPS antenna interface 

Many circuit geometries were based on known success with prior products. 
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For This Product Design (Nets) 
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Direct Radiation from Trace 

 

Trace Drives an Attached Cable and/or Heatsink 

 

Trace Couples to another Trace that Drives an 
Attached Cable 

 

Trace Drives the Power Bus 

No calculations made. Provided HF current return for 
all nets not eliminated after Step 1 (critical nets). 

Optimized each critical net, but relied on filtering to 
chassis to guarantee compliance. 

No calculations made. Visually highlighted all I/O and 
kept several trace heights away from critical nets. 

No calculations made. Focused on providing excellent 
HF decoupling. 
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For This Product Design (Components) 
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Direct Radiation from Component 

 

Component Drives an Attached Cable and/or 
Heatsink 

 

Component Couples to another Trace that Drives an 
Attached Cable 

 

Component Drives the Power Bus 

No calculations made. Negligible. 

No calculations made. Judged to be a non-issue. 

No calculations made. Visually highlighted all I/O and 
kept critical components away. 

No calculations made. Focused on providing excellent 
HF decoupling. 
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Current Project Status 
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 Documenting MREMC algorithms 

 Increasing awareness 

 Looking for software partner 

 Formulating radiated susceptibility algorithms 



Clemson Vehicular Electronics Laboratory - 2013 

Performance-Based EMC Design of Electronic 
Systems 
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In Compliance Magazine, May 2013. 

Automotive Testing Technology 
International, Nov. 2012. 
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Expected Outcomes 
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  Software tools will make this technique easier to 
 implement and accessible to non-expert design 
 engineers 

  Will increase consumer demand for EMC-specific 
 component information 

  Will not replace EMC engineers, but will allow more 
 sophisticated designs 

  Will help engineers to use numerical EM modeling 
 tools more effectively 
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