Importance of EMC Rule Checking in the PCB Design Process

Sam Connor
Senior Technical Staff Member
IBM Systems & Technology Group, Research Triangle Park, NC
Outline

- EMC Rule Checking at IBM
 - History
 - Approach
 - Importance

- PCB EMC Design Rule Checking Workflow
 - Typical
 - Optimized

- Process Improvement through Analytics
History of EMC Rule Checking at IBM

- Emphasis on design specifications (workbooks)
- Emphasis on quality
 - How do you know design guidelines were followed?
- Expertise in electromagnetics
- Numerical modeling of simplified structures
- Knowledge of CAD data
- Expertise in computational geometry algorithms

Motivation

Culture

Research Staff

Rules

EMCEP ca. 1992

Implementation

EDA Team
Level of Analysis in EMC Rule Checking

- **Simple geometrical design rule checks**
 - Very fast
 - Straight-forward to use and interpret

- **“Expert System” analysis**
 - Moderate speed
 - More complicated calculations
 - Attempts to provide more guidance on whether to fix a problem and how
 - Requires understanding of assumptions and limitations
Avoid Exposed (Microstrip) Traces

- Geometrical Rule Check
 - Set a limit on total exposed length
- Expert System
 - Calculate field strength at 3m/10m away based on radiation from a microstrip
 - What if 2” are exposed on each end? Does radiation add?
 - What if the PCB has a shield around it?
 - What frequency(ies) are calculated?
Goal of EMC Rule Checking

Identify violations of design rules and sort them
- Fix most severe violations
- Minimize risk of failure without overdesigning product

Tell me if my product is going to pass EMI testing

- **Challenges:**
 - Cannot simulate entire system with all relevant details
 - Extrapolating from local effects on PCB to far-field performance
 - Products have unique characteristics
 - Airflow requirements
 - Cables/connectors
 - Materials
Importance of EMC Rule Checking

- **PC group was NOT using EMCEP**
 - Developed on x86 hardware & Windows OS but EMCEP was UNIX-only
 - Shorter development cycle than server/mainframe systems

 - **RESULT:**
 - 5-7 PCB revisions over development cycle
 - Consistently failed 1st set of EMC testing
 - 1-2 PCB revisions specifically for EMC fixes

- **After adopting EMCEP/EMSAT...**
 - 1-2 fewer PCB revisions
 - Consistently passed 1st set of EMC testing
Importance of EMC Rule Checking

- **Complexity and density of designs is increasing**
 - A medium-sized server PCB today:
 - 12 layers (6S, 6P)
 - 1109 nets
 - 2364 components
 - 3660 vias

- **Development time is decreasing**

 Automated checking required
 - Data point from mid-1990s
 - Manual review of PC design took 2 weeks
 - Automated review with EMSAT took 1 day
Typical PCB Design Process

Prototype
- Benchtop
 - Limited functionality
 - Measure preliminary spectrum
- Soft-tooled system
 - Basic functionality
 - Run full battery of EMC tests

Design Validation
- Production-level system
 - Full functionality
 - Run EMC certification tests

System Integration
- Run EMC Design Rule Check
 - Length of time varies (longer is better)
EMC Design Rule Checking Tasks/Workflow

- **Rule configuration (1-2 minutes)**
 - Setup limits and options to suit the product technology
 - Not a per-product effort
 - Asynchronously adjusted as an ongoing research effort
- **Design classification or “tagging” (2-4 hours)**
 - Schematics, net lists, experience
 - Boolean expressions and wildcard string matching to find nets & components
- **Run rules (1-60 minutes)**
 - Repeat for all rule configurations necessary
- **Review violations (2-4 hours)**
 - View violations with context (in design view)
 - Look for patterns (repeated design features)
 - Prioritize violations
 - Number of fixes is often limited
Quantify Violation Severity

- Sometimes deeper analysis of violation is required
 - Analytical formula
 - Full-wave modeling

- Preferences
 - Fast analysis
 - Model generated from violation geometry data
 - Easy to create hypothetical solutions and compare
Optimized EMC Design Rule Checking Workflow

- **Reduce time required to classify design**
 - Enforce naming conventions on design teams
 - Tagging can be done automatically with scripts (1-2 minutes)

- **Reduce time required to review violations**
 - Apply post-processing algorithms to violation list
 - Eliminate commonly ignored violations based on recognizable messages or patterns
Process Improvement through Analytics

- **Continual process improvement**
 - Needs feedback loop

- **Benefits:**
 - Measurable improvements to tool
 - More effective usage of tool
Monitor Average Performance

- **Good profile** *(green circle)*
 - Green and red bars close to the same, with blue bar somewhat higher (conservative checking)

- **Bad profiles** *(red circle and red arrows)*
 - Green and red bars close to zero, with blue bar much higher

Legend:
- **Blue bars:** number of violations found by the rule-checking S/W
- **Green bars:** number of violations that were considered important (fix requested)
- **Red bars:** number of violations actually fixed
Summary

- EMC design rule checking is an essential part of IBM’s PCB design process
- Rule checking should be run as early as possible
- Most time is spent “tagging” a design and reviewing results
 - Using naming conventions for nets and components can dramatically improve efficiency of tagging process
 - Post-processing results data to reduce violation list improves efficiency of violation review process
- Analyzing results trends helps improve quality and efficiency of rule checking
Backup Slides
Signal Reference Rules

- Critical nets must not cross a split in the adjacent reference plane

- Critical nets must not change reference planes

- Critical nets must not be within a specified distance of the edge of their reference plane
Wiring and Crosstalk Rules

- Critical nets must not be routed within a specified distance from an I/O net
- Critical nets must be buried between solid planes
- Critical nets must be isolated from other nets by a specified distance
Differential Wiring and Mode Conversion Rules

- Differential vias must have symmetrically placed return vias

- Differential critical nets must be routed within a specified distance of each other, and the length of the mates must match within a specified amount (running skew)
Decoupling Rules

- Decoupling capacitors must be placed between all adjacent plane pairs within a specified grid density (spatial decoupling)

- A decoupling capacitor must be placed within a specified distance from each IC power pin

- The trace connecting between a capacitor (or IC) pin and its via to the power/ground-reference plane must be no longer than the specified distance
Placement Rules

- Filters must be placed close to the I/O connector pins they are filtering

- Certain devices must be placed a specified distance away from other devices or from I/O connectors
 - Analog and digital isolation
 - Prevent coupling of ASIC emissions to I/O signals