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History of EMC

1900 – 1970
– Observation of electromagnetic interference in radios, 

television, and other communications
� Causes are motors, engines, radar, power distribution lines, etc.
� Increase in interference with introduction of transistors, ICs, and 

computing devices

1960s
– Military and aerospace limits imposed

1979
– FCC law limiting radiated emissions

1980 - 1990s
– Emissions limits for computers, peripherals adopted by CISPR
– Many other countries adopt European Norm (EN) 

requirements



4

History of EMC

As soon as there were limits to meet and sales 
were at risk…
– Increased focus on EMC
– Collection of “lessons learned”
– Analytical formulae developed from theory
– Numerical modeling of simplified structures
– > Development of design rules

Late 1990s
– Emergence of automated rule-checking tools

� IBM developed internal tool in 1992

– Formation of Research Consortium at University 
of Missouri at Rolla (UMR)
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Automated EMC Design Rule-
Checking: Fantasy vs Reality

Fantastic Goal: Tell me if my product going to pass EMI testing

Challenges:
– Cannot simulate entire system
– How do we extrapolate from local effects to far-field 

performance?
– Products have unique challenges

� Size, weight
� Airflow requirements
� Cables/connectors
� Materials

Realistic Goal: Identify violations of design rules and rank them 
by severity
– EMC engineer can fix most severe violations and minimize risk 

of failure without overdesigning product
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Electrical vs Mechanical Design 
Rules

Both electrical & mechanical designs are 
critical for overall system EMC performance
Automation efforts have been limited to 
Electrical Rules
– Circuit boards contain the sources of emissions 

and the victims of susceptibility 
– Circuit boards are more complex and more time 

consuming to review manually
� True for simpler systems
� Must be revisited for current systems

– Complex high-performance computing racks
– Modular, integrated products

– Most EMC engineers have EE backgrounds
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EM Wave Propagation

Accelerating charge creates a 
propagating EM wave

– Acceleration of charge = d2Q/dt2

– I=dQ/dt, so a time-varying current 
(dI/dt) creates a propagating EM wave

EMC is about currents
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Can You Identify the EMC 
Problem from this Schematic?

22

U1 U2 U3
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Ground Layer

Signal Trace

IC

Ground Vias

Ground Layer

Signal TraceICGround Via

BOARD STACK UP:

Ground Layer

Signal Trace
CURRENT LOCATION:

Follow the Entire Current Path in 
3-D Space
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Low Frequency Return Currents 
Take Path of Least Resistance

Ground Plane

Driver

Receiver

Z = R + jwL

R >> jwL
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High Frequency Return Currents 
Take Path of Least Inductance

Ground Plane

Driver
Receiver

Z = R + jwL

jwL >> R
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PCB Example for Return Current 
Impedance

Trace

GND Plane

22” trace

10 mils wide, 1 mil thick, 10 mils above GND plane

Driver

Termination
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PCB Example for Return Current 
Impedance

Trace

GND Plane

Shortest return path

Longer return path (current returns under trace)
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Current Path Impedance Example for U-shaped 22" Trace
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Surface Current Distribution/ 
Animation at High Frequency (3 GHz) 
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Surface Current Distribution/ 
Animation at Mid Frequency (360 MHz)
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Surface Current Distribution/ 
Animation at Low Frequency (2 MHz)
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Can You Identify the EMC 
Problem from this Schematic?

22

U1 U2 U3

?

No. We need to know the full current path, 
which is dependent on layout and frequency.
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Ground/Earth

Telegraph
Receiver

Telegraph
Transmitter
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EMC PCB Design Rules

Examples of EMC design guidelines
– Don’t cross splits in reference planes
– Don’t route nets too close to the edge of a reference 

plane
– Bury clock nets and other high energy sources
– Put filters on I/O lines near the connector
– Place decoupling near IC power pins
– Use spatial decoupling to avoid lower-frequency 

power plane resonances
List grows with lessons learned
– Importance of root-cause analysis and feedback

New rules are needed as technology evolves (higher 
frequencies, move toward differential signaling, etc)
Some rules lose importance over time
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Signal Reference Rules

Critical nets must not cross a split 
in the adjacent reference plane

Critical nets must not change 
reference planes 

Critical nets must not be within a 
specified distance of the edge of 
their reference plane 
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Splits in Reference Plane

Boards with multiple power planes often have 
splits
– Sometime crossing cannot be avoided
– Return current path is interrupted

Stitching capacitor required across split to allow 
return current flow
– Must be close to crossing point
– Consider stitching capacitor impedance

� Inductance dominates

Frequency spectrum of signal is important
– Clock signals (energy at high harmonics)
– High frequency harmonics return through 

displacement current in dielectric
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Split Reference Plane Example

PWR

GND
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Split Reference Plane Example
With Stitching Capacitors

PWR

GND

Stitching Capacitors 
allow return current 
to cross splits



25

Capacitor Impedance
Measured Impedance of .01 uf Capacitor
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Frequency Domain Amplitude of Intentional Current Harmonic Amplitude
From Clock Net
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Microstrip Current Distribution 
Example – Method of Moments 
Simulation (100 MHz Clock)
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Microstrip Current Distribution 
Example – Zoomed View
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Near Field Radiation from Microstrip on 
Board with Split in Reference Plane

Comparison of Maximum Radiated E-Field for Microstrip
With and without Split Ground Reference Plane
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With “Perfectly Connected”
Stitching Capacitors Across Split

Comparison of Maximum Radiated E-Field for Microstrip
With and without Split Ground Reference Plane and Stiching Capacitors
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Stitching Caps with Via Inductance
Comparison of Maximum Radiated E-Field for Microstrip

With and without Split Ground Reference Plane and Stiching Capacitors
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Example of Common-Mode Noise Voltage Across Split Plane
  Vs. Stitching Capacitor Distance to Crossing Point
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Are Stitching Capacitors Effective?

It depends

– Yes, at low frequencies 

– No, at high frequencies

Limit the high frequency current 
spectrum

– Slew rate control

Avoid split crossings with ALL high-
speed (high data rate and/or fast rise 
time) signals
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Wiring and Crosstalk Rules

Critical nets must not be routed 
within a specified distance from 
an I/O net 

Critical nets must be buried 
between solid planes 

Critical nets must be isolated from 
other nets by a specified distance
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Differential Wiring and Mode 
Conversion Rules

Differential vias must have 
symmetrically placed return vias

Differential critical nets must be 
routed within a specified distance of 
each other, and the length of the 
mates must match within a specified 
amount (running skew)

+

-
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Decoupling Rules

Decoupling capacitors must be placed 
between all adjacent plane pairs within a 
specified grid density (spatial decoupling)

A decoupling capacitor must be placed within 
a specified distance from each IC power pin 

The trace connecting between a capacitor (or 
IC) pin and its via to the power/ground-
reference plane must be no longer than the 
specified distance 
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Placement Rules

Filters must be placed close to the 
I/O connector pins they are filtering

Certain devices must be placed a 
specified distance away from other 
devices or from I/O connectors

– Analog and digital isolation

– Prevent coupling of ASIC emissions 
to I/O signals

I/O

F

I/O

ASIC
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Evolution of Design Practices

Technology evolves

– Higher frequencies (data rates and rise 
times)

– Higher density (smaller components, 
better process control)

– CAD program enhancements

Design rules must adapt

– Update models & analytical formulae

– Build new test vehicles
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Design Evolution Example 1

10 years ago, all nets were 
routed with straight lines

– Also mostly at fixed angles 
(multiples of 22.5 degrees)

Now, arcs are supported

– Requires more advanced 
algorithms for bounding box 
and intersection calculations

Trace over round hole

Isolation between traces

Angle of approach to 
edge of plane
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Design Evolution Example 2

De-emphasis or change in focus of 
decoupling rules
– 10-15 years ago, spacing between 

power and ground planes was typically 
10 mils or more
� Smaller layer count
� Fewer devices and lower pin count 

connected to planes
� More energy content between 30-300MHz

– Now, power planes have separations of 
3-4 mils (or smaller with special 
dielectrics)
� More capacitance between planes reduces 

dependence on decoupling caps
� Higher frequency content does not excite 

the lower-order resonant modes where 
caps are effective

� Higher device and pin count lowers the Q 
of plane resonances

Dielectric 
thickness 
dropped from 
10 to 4 mils = 
~8 dB drop in 
impedance
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Design Evolution Example 3

Shrinking features, such as pin pitch, create new 
challenges

– When antipads overlap, they create a slot in 
reference plane

– If CAD data does not join antipads, then rule-
checking tool must do it



42

Design Evolution – Other 
Examples

Vias

– Back-drilling

– Blind

– Shared antipad

Nets

– Linked nets (i.e. through DC blocking caps or 
series resistors)

Layers

– Embedded capacitance (non-uniform dielectric 
through stackup)

– Power/ground shapes on signal layers
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Summary

PCB design for EMC is all about currents

– Pay attention to return current path

Design rules are needed to achieve EMC 
compliance

Main EMC design rules are well known

– Numerous publications & presentations 

– Use simulation and measurement results to 
select meaningful limits

As technology changes, rules need to adapt
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Present State of Automated EMC 
Design Rule Checking
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Rule Checking Choices

Automated vs Manual Reviews

Develop vs Purchase

Level of analysis
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Progression of EMC PCB Design 
Rule Checking

From light tables and transparencies to CAD 
reviews
– Rule checking findings migrate from hardcopy 

to softcopy

From co-located teams to global teams
– Harder to conduct manual reviews and 

communicate issues to designer 

From low layer count and low density boards 
to high layer count and high density boards
– Too complex to review manually within time 

constraints

From manual reviews to automated reviews
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Automated Reviews

Pros

– Saves analysis time

– More repeatable

– Less prone to 
human error

– Psychological factor 
(facts vs opinions)

Cons

– Have to learn a new 
tool

– Development or 
purchase expense

– “If we buy a tool, 
they won’t need 
me”
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Develop vs Purchase

Develop

– Have resources to 
develop algorithms 
and software

– Need something 
special

� Custom-tailored to 
your design 
process

� Conversion or pre-
processing of CAD 
data

Purchase

– Need a solution 
today

– Don’t have mix of 
CAD and software 
skills available

– Flexible design 
process

– NB: Some tools 
allow customization
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Purchase Options

The major CAD vendors have a rule checking solution
– Pros: 

� Integrated in design tool
� Easy to adopt

– Things to check:
� Can it process boards from other vendors?
� Is the tool supported and maintained by knowledgeable EMC 

engineers?
� Can the rules and limits be customized?
� Cost

3rd Party Vendors
– Pros: 

� Rule checking is main focus, not a supplementary tool
� Supported and maintained by knowledgeable EMC engineers
� Support multiple CAD formats

– Things to check:
� Can the rules and limits be customized?
� How easily will the tool fit into your design process?
� Cost
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Level of Analysis

Simple geometrical design rule check

– Very fast

– Straight-forward to use and interpret

“Expert System” analysis

– Moderate speed

– More complicated calculations

– Attempts to provide more guidance on whether 
to fix a problem and how

– Requires understanding of assumptions and 
limitations
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Rule Check vs. Expert System 
Example

Avoid Exposed (Microstrip) Traces

– Rule Check

� Set a limit on total exposed length

– Expert System

� Calculate field strength at 3m/10m away 
based on radiation from a microstrip

– What if 2” are exposed on each end? Does 
radiation add?

– What if the PCB has a shield around it?

– What frequency(ies) are calculated?
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Rule Checking Capabilities

Rule configuration

Design classification

Results

– Reports

– Visualization of violations
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Rule Configuration

Tool must provide an intuitive way to:

– Define your “playlist”

� Which rules to run

– Define your rule limits

– Define which options are enabled

� Adjustments to how the rule works

– Store and recall settings
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Design Classification

Tool must provide an intuitive way to define which nets 
and components are important

– Automatically classify by naming convention

– Manually classify by selection within graphical 
interface (CAD tool)

– Manually classify in a spreadsheet-like interface

XP01_
DD01

XDDR_
DQ01

XXCPU_
CLK_P

XCPU_
D01

PCIe
Nets

Mem
Nets

CPU 
Nets

Clock 
Nets

Net 
Name

Control File:

CPU* = CPU Nets

*CLK* = Clock Nets

DDR* = Mem Nets

P*_DD* = PCIe Nets
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Results

Tool must provide a way 
to review violations

– Convenient report 
format that can be sent 
to team members

� Standard formats are 
usually best (HTML, 
PDF, XLS, ODF, etc)

– Visual display provides 
best context for decision 
making
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Rule Checking Application 
Considerations

Modularity and Expandability
– Ability to add and modify rules easily to adjust to 

technology changes
– Support for multiple CAD formats

Measurability
– Might need/want to track usage
– Data mining of results statistics can be used to improve rules

Usability
– Does it have to run inside the CAD environment or can it be a 

separate process?
– How does the user review output?

Portability
– Support for multiple operating systems 

Maintainability
– Use a modern language (balance of what skills are present in 

your organization and availability of compilers, libraries, etc)
– Object-oriented design
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Modularity and Expandability

Easy to add new rules

– Adapt to technology changes

– Incorporate other rulesets
� Signal Integrity

� Power Integrity

� Thermal? Mechanical? Other?

Easy to adjust settings and limits for 
rules

– No recompiling or modifying of scripts 
required
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Measurability

Continual process improvement is key

Benefits:

– Measurable improvements to tool

– More effective usage of tool

Note:

– Minimize extra work for users (make it easy!)

0

10

20

30

40

50

60

70

80

90

100
A

ve
ra

g
e 

N
u

m
b

er

# of Vios Found by EMSAT

# of Vios with Fix Requested

# Vios Fixed by Development

404107



59

Summary

Automate!

– Speed

– Consistency

When selecting a tool or developing one

– Be wary of “expert” tools that apply algorithms 
beyond their scope

– Choose flexibility

� Ease of adding and customizing rules

– Consider integration with design process

� Setup, rule execution, and results evaluation

� Tracking
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Future of Automated EMC Design 
Rule Checking
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Computing Paradigm Shift

Cloud computing

– Advantages: 
� Tools pre-loaded and pre-configured in a virtual 

instance

� Shared rule and design resources

� Offload computationally intensive analyses

� Enables usage tracking

– Issues:
� Graphics performance over web interface

� Licensing for CAD tools

� Intellectual property security concerns
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Design Rule Checking for ASIC 
Packages

Organic packages are small 
PCBs

Packages are electrically large 
above 3 GHz (10cm 
wavelength)

With each new silicon 
technology family:

– Smaller gate sizes

– Faster slew rates

– Higher emissions
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Previous Work on EMC of ICs

Measure near-fields above IC

– Find design patterns that cause “hot-spots”

– Convert to equivalent dipole sources and predict 
far-field radiation

– Issues:

� Can you measure near-fields with lid on? 

� What if the IC needs a heatsink to operate with 
normal traffic?

� Helps with system-level simulations and design, 
but usually too late to impact IC design
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Common Threads in Recent 
Literature

PCB-Package Co-Simulation

– Include package parasitics in end-to-end link 
simulations

– Marry PDN characteristics of both domains to 
get total picture of power delivery to chip

SI-PI Co-simulation

– Include power integrity effects in signal integrity 
simulations

Where is EMI is this discussion?

– EMI tends to be ~20dB more sensitive than SI
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Rules to Explore

Decoupling rules for package
– Via stitching and decoupling between planes
– Adequate number of BGAs between PCB and 

package for power and ground nets

PCB wiring rules applied to package
– Signal referencing

� Splits
� Reference plane changes

– Signals buried and away from edges of planes
– Differential Pair Skew

Lid grounding
Other?
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Design Rule Checking for 
Systems

Most existing rule checking tools and 
efforts focus on PCBs

Many issues found in the lab are caused 
by mechanical or system integration 
issues

– Missing or ill-fitting gaskets

– Cables and connectors between PCBs

– Grounding
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Design Rule Checking for 
Systems

Extend PCB rules to multi-board 
scenarios (running skew, signal 
reference continuity, I/O filter 
placement)
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Design Rule Checking for 
Systems

Work on ways to process mechanical CAD files 
and identify holes, slots with missing gaskets, 
other
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Challenges of Mechanical Rule 
Checks

Supporting multiple CAD formats

Modularity

Tolerances

Metal coatings

3D vs “2.5D”
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Design Rule Checking for 
Systems

Combine electrical and mechanical 
design data and evaluate grounding, 
excessive coupling between parts

PCB

ASIC

Heatsink
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Design Rule Checking for 
Systems

Develop way to visualize problems for 
easy reviewing

– Standard formats

� STEP

� 3D-PDF

� U3D

– Embedded in CAD tool with scripts
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Summary

Time to move beyond checking individual PCBs

Cloud computing opens new possibilities

Rule-checking at IC package level

– IC packages are small PCBs

– ICs are not electrically small above 3-5 GHz

– Many PCB design rules apply directly

Rule-checking at System level

– Many EMC issues are related to system integration

� Check mechanical features

� Check electrical-to-electrical, electrical-to-mechanical, 
and mechanical-to-mechanical interfaces


