

dissipated (volts) (watts) (emps) (mOhms) (MHz) 90 5.0 5 1 250 16 93 3.3 10 3 54 66 96 2.5 30 12 10 200 99 1.8 90 50 1.8 600	TARGET IMPEDANCE IS DROPPING BY A FACTOR OF 5 EVERY COMPUTER GENERATION year voltage dissipated (volts) power (watts) current (amps) Ztarget (mOhms) frequency (MHz) 1990 5.0 5 1 250 16 1990 3.3 10 3 54 66 1996 2.5 30 12 10 200 1999 1.8 90 50 1.8 600
FACTOR OF 5 EVERY COMPUTER GENERATION ar vollage power current Ztarget frequency dissipated (wolts) (watts) (amps) (mOhns) (MHz) 90 5.0 5 1 250 16 93 3.3 10 3 54 66 96 2.5 30 12 10 200 99 1.8 90 50 1.8 600	FACTOR OF 5 EVERT COMPUTER GENERATION year voltage power current Ztarget frequency dissipated (wotts) (watts) (amps) (mOhms) (MHz) 1990 5.0 5 1 250 16 1993 3.3 10 3 54 66 1996 2.5 30 12 10 200 1999 1.8 90 50 1.8 600
dissipated (volts) (watts) (emps) (mOhms) (MHz) 90 5.0 5 1 250 16 93 3.3 10 3 54 66 96 2.5 30 12 10 200 99 1.8 90 50 1.8 600	dissipated (volts) dissipated (watts) (amps) (mOhms) (MHz) 1990 5.0 5 1 250 16 1993 3.3 10 3 54 66 1996 2.5 30 12 10 200 1999 1.8 90 50 1.8 600
(volts) (waits) (amps) (mOhns) (MHz) 90 5.0 5 1 250 16 93 3.3 10 3 54 66 96 2.5 30 12 10 200 99 1.8 90 50 1.8 600	(volts) (watts) (amps) (mOhns) (MHz) 1990 5.0 5 1 250 16 1993 3.3 10 3 54 66 1996 2.5 30 12 10 200 1999 1.8 90 50 1.8 600
93 3.3 10 3 54 66 96 2.5 30 12 10 200 99 1.8 90 50 1.8 600	1993 3.3 10 3 54 66 1996 2.5 30 12 10 200 1999 1.8 90 50 1.8 600
96 2.5 30 12 10 200 99 1.8 90 50 1.8 600	1996 2.5 30 12 10 200 1999 1.8 90 50 1.8 600
99 1.8 90 50 1.8 600	1999 1.8 90 50 1.8 600
	(Power Supply Voltage) \times (allowed ringle)
Z (Power Supply Voltage) × (allowed ripple)	Z (renter supply renuge) / (unonou repres
$Z_{\text{target}} = \frac{(\text{Power Supply Voltage}) \times (\text{allowed ripple})}{\text{current}}$ $= \frac{(5 \text{ V}) \times (5\%)}{1 \text{ A}} = 0.250 \text{ Ohms.}$	$Z_{\text{target}} = \frac{(const supply (const) + (const supply))}{current}$
	(Power Sunniv Voltage) × (allowed rinnle)

	age Regulator Module (VRM) : working mechanism
Ind	uctor
1. 2. 3.	S1 close, S2 open : load is demanding current, L1 is storing energy. If L1 supply more current than the load demanding, S1 open, S2 close. Current continues to flow to the load until S2 opens, S1 closes again.
5.	current continues to now to the load until 32 opens, 51 closes again.
	S1 Capacitor
	S2 S
	(a)
Am	plifier A
1.	When the load voltage is too low, it causes the switches and inductor to ramp up the current.
2.	When the load voltage is too high, it causes the switches and inductor to ramp d the current.

· · ·						NTU EN
Volta	age Reg	ulator M	odule (VRN	Л) : linear	model	
1.			ent in the linear	r model that is i	not traceable b	ack to an
2.	0.0		ar VRM model. chosen so that d	current will be r	amped up in t	ne linear mor
۷.		_	that it is rampe			ie intedi thou
				R. flat		
Fo	r example				1	
			16-8	L_slew	L_out R0	
L_	slew = $V \frac{dt}{di}$	= (1.8V*0.05)	$\frac{15 \text{uSec}}{20 \text{A}} = 67.5 \text{nH}$	٢		load
_						
l y	pical param	neters for a N	/RM attached or	n a processor m	odule	
_	parameter	value	units			
	out	4	mOhm nH			
	flat	30	mOhms			
	Slew	67.5	nH			
		:ME +M	200.1			

iigii iice			acitance: Typ	•
Dielectric type	ESR	Reliability	Value	
NPO	lowest	best	Up to a few nF	Package size: 0603
X7R	dependent	good	Several nf to several uF	1206 0805
X5R	dependent	fair	Several nF to 100 uF	
Y5V	dependent	Poor	High capacitance	

	ESL of Ceramic Capa	citance : Capacitance height
and down and effectively increase the length the current loop.	Capacitor heig	ght
20 300 30 450 40 600 ← 0805		For thicker capacitor, the current has to flow up and down and effectively increase the length o the current loop.
10	20	300
Figure 10: Height adds inductance to the capacitor.	50	700

ESL of Ceramic Capacitance : PWR/GND spreading inductance	NTO EMC Lat
The last factor contributing to the ESL is the Spreading inductance between the PWR/GND.	
What is the meaning of the <u>spreading inductance</u> ?	

